Formality and Star Products

نویسندگان

  • Alberto S. Cattaneo
  • Davide Indelicato
چکیده

These notes, based on the mini-course given at the PQR2003 Euroschool held in Brussels in 2003, aim to review Kontsevich’s formality theorem together with his formula for the star product on a given Poisson manifold. A brief introduction to the employed mathematical tools and physical motivations is also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation Quantization : an introduction

I shall focus, in this presentation of Deformation Quantization, to some mathematical aspects of the theory of star products. The first lectures will be about the general concept of Deformation Quantisation, with examples, with Fedosov’s construction of a star product on a symplectic manifold and with the classification of star products on a symplectic manifold. We will then introduce the notio...

متن کامل

On the Deformation Quantization of Affine Algebraic Varieties

Since the fundamental work of Bayen et al. [1] in the seventies, a lot of effort has been dedicated to show the existence of deformations of a Poisson manifold. Some landmarks in this way were the proof of the existence of differential star products for symplectic manifolds which was done independently by De Wilde and Lecomte [2] and Fedosov [5], using different constructions. It turned out tha...

متن کامل

2 00 1 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization

We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.

متن کامل

Deformation quantization with traces

In the present paper we prove a statement closely related to the cyclic formality conjecture [Sh]. In particular, we prove that for a volume form Ω and a Poisson bivector field π on Rd such that divΩ π = 0, the Kontsevich star-product [K] with the harmonic angle function is cyclic, i.e. ∫ Rd (f ∗ g) · h · Ω = ∫ Rd (g ∗ h) · f · Ω for any three functions f, g, h on Rd (for which the integrals ma...

متن کامل

0 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization

We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005